

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Study of Enol-Keto Tautomerism of N-(2-Hydroxy-1-Naphthylidene)anils

Pál Nagy^a; Rozália Herzfeld^a

^a Department of Chemistry, Juhász Gyula Teachers' Training College, Szeged, Hungary

To cite this Article Nagy, Pál and Herzfeld, Rozália(1998) 'Study of Enol-Keto Tautomerism of N-(2-Hydroxy-1-Naphthylidene)anils', *Spectroscopy Letters*, 31: 1, 221 – 232

To link to this Article: DOI: 10.1080/00387019808006773

URL: <http://dx.doi.org/10.1080/00387019808006773>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDY OF ENOL-KETO TAUTOMERISM OF N-(2-HYDROXY-1-NAPHTHYLIDENE)ANILS

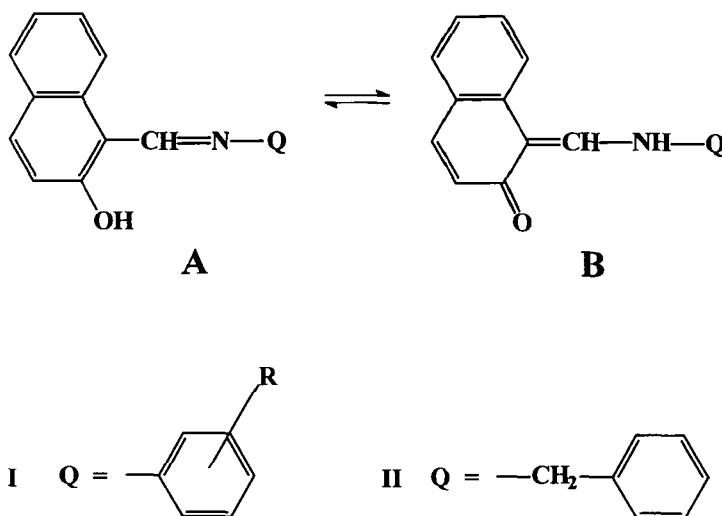
Key words: Schiff bases, tautomerism, substitution effect, UV-visible spectroscopy

Pál Nagy and Rozália Herzfeld

Department of Chemistry, Juhász Gyula Teachers' Training College,
P.O. Box 396, H-6701 Szeged, Hungary

ABSTRACT

The enol-keto tautomerism of N-(2-hydroxy-1-naphthylidene)anilines was studied. In response to the action of salts (e.g. CaCl_2), in ethanolic solution the equilibrium is shifted extensively in the direction of the keto form; this allows determination of the concentration of the keto form and of the equilibrium constant of the process. In accordance with the Hammett equation, the equilibrium constant varies as a function of the constants σ of the substituents on the aniline ring.


INTRODUCTION

It has long been known that a characteristic solvent effect can be observed in the absorption spectra of Schiff bases containing an *o*- or *p*-OH group on the aromatic aldehyde component; this effect is primarily induced by protic solvents^{1,2}. There is a very extensive literature on investigations of this phenomenon³⁻¹⁰, and it is now generally accepted that the solvent dependence to be observed in the spectrum may be interpreted in terms of an enol \rightleftharpoons keto tautomeric equilibrium (Scheme 1), though the possibility of formation of a zwitterion structure cannot be excluded¹¹⁻¹³.

Direct quantitative study of the equilibrium by means of spectroscopy is not possible, as the molar absorbances of the tautomers are not known. NMR spectral data on the quantity of the keto form have been reported for the N-(2-hydroxy-1-naphthylidene)anilines^{3,14-17}. In order to determine the quantity of the keto form, we have made use of the observation that in ethanolic solution, in response to the action of various salts, and particularly CaCl_2 , the equilibrium is shifted to such a degree in the direction of the keto form that the limiting value of the 440 nm band (ascribed to the keto form) can be extrapolated. The present article compares the results obtained in this way with the literature data resulting from NMR spectral studies.

EXPERIMENTAL

The investigated compounds were prepared by the condensation of 2-hydroxy-1-naphthaldehyde with substituted anilines or

Scheme 1

benzylamine. After recrystallization, their purities were checked by means of m.p. measurement, and the absorbances in the visible and ultraviolet ranges were examined in various solvents. Measurements were made with a VSU-2P spectrophotometer at 25 °C. The applied solvents and the CaCl_2 were of spectroscopic purity and were free of water.

RESULT AND DISCUSSION

In solution in various organic solvents, in the absence or in the presence of CaCl_2 , the absorption spectra of the investigated compounds exhibit well-defined isosbestic points, in accordance with an equilibrium of type A \rightleftharpoons B (Figs 1 and 2).

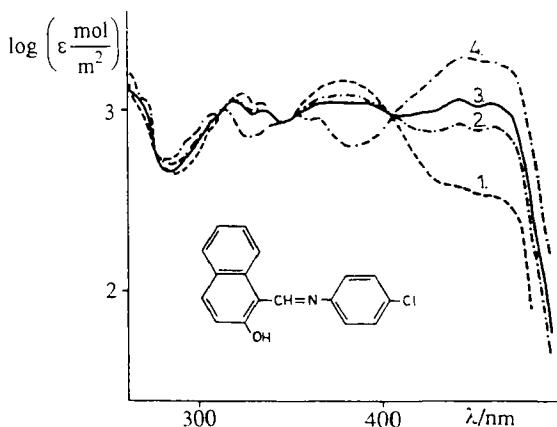


Fig. 1 Absorption spectra of N-(2-hydroxy-1-naphthylidene)-4-chloroaniline in (1) ethanol-hexane (1:9), (2) ethanol-hexane (1:1), (3) absolute ethanol, and (4) 0.9 mol dm⁻³ CaCl₂ in absolute ethanol.

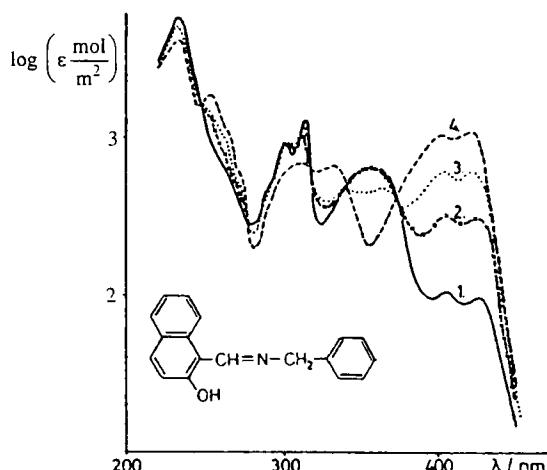


Fig. 2 Absorption spectra of N-(2-hydroxy-1-naphthylidene)-benzylamine in (1) cyclohexane, (2) ethanol-cyclohexane (1:49), (3) ethanol-cyclohexane (1:9), and (4) 0.9 mol dm⁻³ CaCl₂ in absolute ethanol.

The individual bands in the spectra can generally be ascribed either to form A or to form B, as their intensities vary in opposite ways in accordance with the position of the equilibrium. The band at 400-460 nm, for example, can be ascribed to the keto form; the enol form has no appreciable absorbance in this region. Using the method of Berstein¹⁸, we confirmed this from the data of the absorption spectra recorded in the various solvents¹⁹.

Figures 1 and 2 reveal that, in response to the action of CaCl_2 , the equilibrium is shifted significantly in the direction of the keto form. If the CaCl_2 concentration is increased, the intensity of the 440 nm band tends towards the limiting value. This is illustrated as an example in Fig. 3.

The curves can be described well by the relation

$$\Delta\epsilon = \frac{[\text{salt}]}{a + b[\text{salt}]} \quad (1)$$

This can be rewritten as

$$\frac{1}{\Delta\epsilon} = \frac{a}{[\text{salt}]} + b \quad (2)$$

and Fig. 4 demonstrates that a plot of $\frac{1}{\Delta\epsilon}$ versus $\frac{1}{[\text{salt}]}$ for the experimental data is linear.

The intercepts of these linear plots on the ordinate (obtained graphically or by the method of least squares) give the value of b , i.e. the limiting value of $\frac{1}{\Delta\epsilon}$. From this, the molar absorption coefficient

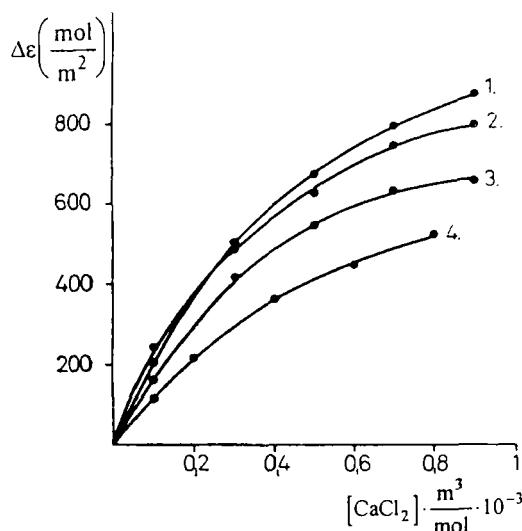


Fig. 3 Change in intensity of the 440 nm keto band ($\Delta\epsilon = \epsilon_{\text{CaCl}_2} - \epsilon_{\text{ethanol}}$) at the band maximum as a function of $[\text{CaCl}_2]$ for N-(2-hydroxy-1-naphthylidene)anilines. Substituents: (1) *p*-Cl, (2) *p*-OCH₃, (3) *m*-OH, and (4) H.

of the keto form (ϵ_k) may be obtained at the band maximum:

$$b = \frac{1}{\Delta\epsilon_i} ; \quad \epsilon_k = \Delta\epsilon_i + \epsilon_{\text{ethanol}}$$

where $\Delta\epsilon_i$ is the limiting value of $\Delta\epsilon$. Data calculated in this way are to be seen in Table 1. It is noteworthy that the nature of the substituents has little influence on the value of ϵ_k .

For compound I(4), G. O. Dudek and E. P. Dudek determined the quantity of the keto form and the value of ϵ_k by study of the NMR, ultraviolet and visible spectra³. Their data are given in Table 2 (in $\epsilon_k/\text{m}^2 \text{ mol}^{-1}$).

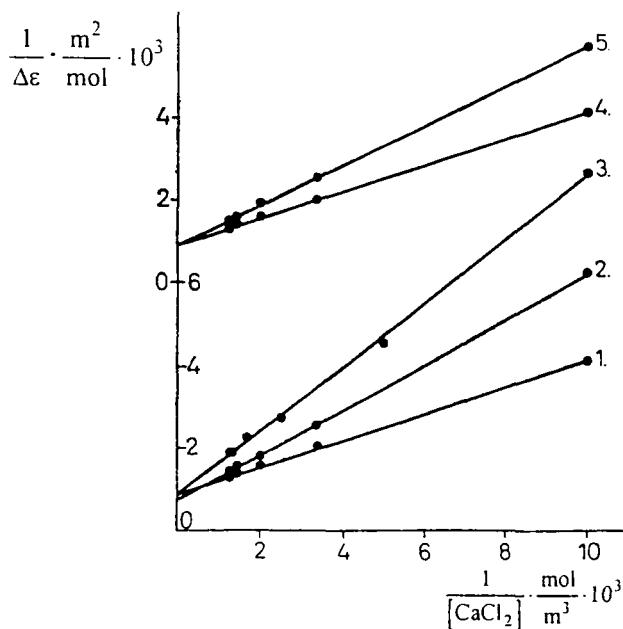


Fig. 4 Plots of the experimental data on N-(2-hydroxy-1-naphthylidene)anilines according to Eq. (2). Substituents: (1) *p*-OCH₃, (2) *m*-OH, (3) H, (4) *p*-OH, and (5) *p*-CH₃.

TABLE 1

ϵ_k values of the keto form for N-(2-hydroxy-1-naphthylidene)anils in absolute ethanol at 25 °C.

Compound	R	$\lambda_{\text{max}}/\text{nm}$	$\epsilon_k/\text{m}^2 \text{mol}^{-1}$
I (1)	<i>p</i> -OH	450	2480
I (2)	<i>p</i> -OCH ₃	445	2440
I (3)	<i>p</i> -CH ₃	440	2430
I (4)	H	440	2350
I (5)	<i>m</i> -OH	440	2550
I (6)	<i>p</i> -Cl	440	2650
I (7)	<i>m</i> -Cl	440	2550
II	-	420	1086

TABLE 2

ϵ_k values for compound I(4) in various solvents³.

solvent	$\lambda_{\text{max}}/\text{nm}$	$\epsilon_k/\text{m}^2 \text{mol}^{-1}$
CCl ₄	435	2240
CHCl ₃	438	2250
CH ₃ CN	433	2340

It may be seen that these data agree well with those that we determined, and it may also be stated that the molar absorption of the keto form at 440 nm is not influenced appreciably by the solvent applied.

Salman et al. determined the quantity of the keto form of the same compound by measurement of the proton-proton coupling constant ³J(CH-NH)¹⁴⁻¹⁶. The percentage of the keto form measured in chloroform, in proportion to the molar absorbance of the long-wave band, was used to calculate the quantity of the keto form in various solvents for five *p*-substituted derivatives¹⁷.

In order to compare the experimental data obtained with the different methods, from the data reported by Kamounah and Salman we calculated the molar absorption coefficients for the maximum of the long-wave keto band (Table 3).

The data in Table 3 reveal that the values calculated for the methyl and bromo derivatives agree with those in Tables 1 and 2. The other values, however, and particularly those for the unsubstituted derivatives, appear improbably high. It is possible that the coupling

TABLE 3

Molar absorption coefficient of the keto form (ϵ_k) for N-(2-hydroxy-1-naphthylidene)anilines substituted on the aniline ring, calculated from data reported for methanolic solutions¹⁷.

R	$\lambda_{\text{max}}/\text{nm}$	$\epsilon_k/\text{m}^2 \text{ mol}^{-1}$
<i>p</i> -OCH ₃	444	4122
<i>p</i> -CH ₃	439	2293
H	437	11770
<i>p</i> -Br	439	2660
<i>p</i> -NO ₂	450	3850

constant of 11.6 Hz¹⁵ calculated for the methyl derivative in the determination of the keto percentage requires correction for other substituents.

Kamounah and Salman¹⁷ did not observe a clear-cut connection between the keto percentage and the electron-attracting effect of the substituent. In contrast, our investigations indicated that the equilibrium constant can be calculated in the knowledge of the quantity of the keto form:

$$K = \frac{[\text{keto}]}{[\text{A}]_0 - [\text{keto}]} \quad (3)$$

In accordance with the Hammett equation, K varies as a function of the constant σ (Table 4, Fig. 5) and also as a function of the basicity of the corresponding substituted aniline²⁰ (Fig. 6).

This experience corresponds to the expectation that the formation of the keto form is promoted by the electron-donating

TABLE 4

Percentage of the keto form and equilibrium constant of the process for compounds I (1-7).

R	abs. ethanol		50% ethanol-50% hexane	
	% keto	<i>K</i>	% keto	<i>K</i>
<i>p</i> -OH	58.3	1.40	49.2	0.968
<i>p</i> -OCH ₃	55.9	1.27	45.1	0.821
<i>p</i> -CH ₃	55.9	1.27	45.7	0.841
H	51.7	1.07	40.6	0.683
<i>m</i> -OH	47.7	0.911	39.2	0.644
<i>p</i> -Cl	42.4	0.736	32.1	0.472
<i>m</i> -Cl	39.4	0.650	27.1	0.372

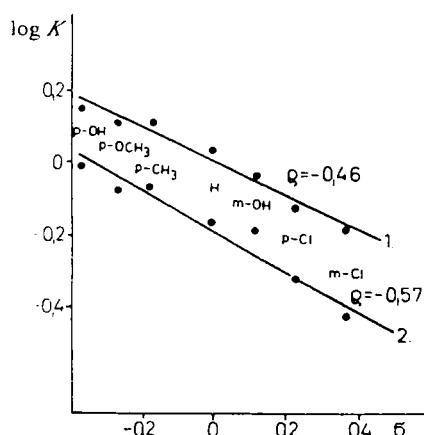


Fig. 5 Variation in $\log K$ as a function of the constant σ of the substituent in (1) absolute ethanol and (2) a 1:1 ethanol-hexane mixture.

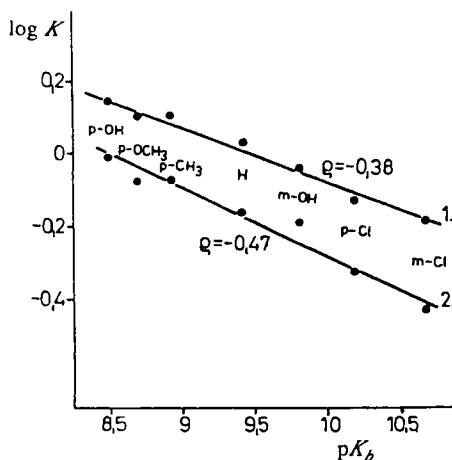


Fig. 6 Variation in $\log K$ as a function of the value of pK_b^{20} of the corresponding substituted aniline.

nature of the substituent on the aniline ring, i.e. by increasing basicity of the amine component of the Schiff base. In ethanolic solution, compound II is present as the keto form to an extent of 90%, for example, in accordance with the fact that benzylamine is essentially more basic than the aniline derivatives.

This work has demonstrated that the action of CaCl_2 dissolved in ethanol allows a quantitative study of the enol-keto tautomerism of Schiff bases. An interpretation of this "salt effect" has so far not been discovered. It is possible that the zwitterion structure¹¹⁻¹³ must be taken into consideration in the explanation of the phenomenon, for it is probable that in ethanolic solution the zwitterion structure is stabilized by the field of the undissociated salt molecules. Formally, the interactions of the salt and these Schiff bases can be described in accordance with a complex equilibrium.

REFERENCES

1. Tsuchida R., Tsumaki T. Bull. Chem. Soc. Japan 1938; 13: 537.
2. Kiss A., Auer G. Phys. Chem., A 1941; 189: 344.
3. Dudek G.O., Dudek E.P. J. Am. Chem. Soc. 1964; 86: 4283. 1966; 88: 2407. J. Chem. Soc., B 1971; 1356.
4. Ledbetter J.W. J. Phys. Chem. 1966; 70: 2245. 1967; 71: 2351. 1968; 72: 4111.
5. Nagy P. Magy. Kém. Folyóirat 1966; 72: 108.
6. Nagy P., Kovér E. Magy. Kém. Folyóirat 1971; 77: 100.
7. Császár J., Balogh J. Acta Chim. Hung. 1975; 86: 101.
8. Ranganathan H., Ramasimi T., Ramaswamy D., Santappa M. Chem. Lett. 1979; 1201. Indian J. Chem. 1986; 25 A: 127.
9. Nagy P., Herzfeld R. Acta Phys. et Chem. Szeged 1987; 33: 53.
10. Salman S. R., Shawkat S. H. Can. J. Spectrosc. 1992; 37: 46.
11. Lewis J.W., Sandorfy C. Can. J. Chem. 1982; 60: 1720. 1982; 60: 1727.
12. Ledbetter J.W. J. Phys. Chem. 1982; 86: 2449.
13. Nagy P., Herzfeld R. Acta Phys. et Chem. Szeged 1989; 35: 55.
14. Salman S.R., Farrant R.D., Lindon J. C. Spectrosc. Letters 1991; 24: 1071.
15. Salman S.R., Lindon J. C., Farrant R.D., Carpenter T. A. Magn. Reson. Chem. 1993; 31: 991.
16. Salman S. R., Petros A. G., Sweatman B.C., Lindon J. C. Can. J. Applied Spectrosc. 1994; 39: 1.
17. Kamounah F.S., Salman S.R. Spectrosc. Letters 1996; 29 (4): 659.
18. Berstein J.J., Kaminszkij J. L. Opt. Spekt. 1963; 15: 705.
19. Nagy P., Herzfeld R. Magy. Kém. Folyóirat 1992; 98: 140.
20. Brande E.A. and Nachod F.C. *Determination of Organic Structures by Physical Methods*. Vol. I., Academic Press, New York 1955; 567.

Date Received: July 9, 1997

Date Accepted: August 22, 1997